Error estándar de la media vs. Desviación estándar: la diferencia

Abadía de Senanque en Provenza con campos de lavanda

la desviación estándar (sd) mide la cantidad de variabilidad, o dispersión, para un conjunto de datos del sujeto a partir de la media, mientras que el error estándar de la media (sem) mide qué tan lejos puede estar la media de la muestra de los datos verdadera población media. el sem siempre es más pequeño que el sd.

La desviación estándar y el error estándar a menudo se usan en estudios clínicos experimentales. En estos estudios, la desviación estándar (SD) y el error estándar estimado de la media (sem) se utilizan para presentar las características de los datos de la muestra y explicar los resultados del análisis estadístico. sin embargo, algunos investigadores ocasionalmente confunden el sd y el sem en la literatura médica. tales investigadores deberían recordar que los cálculos para sd y sem incluyen diferentes inferencias estadísticas, cada una de ellas con su propio significado. SD es la dispersión de datos en una distribución normal. en otras palabras, sd indica con qué precisión la media representa los datos de la muestra. sin embargo, el significado de sem incluye inferencia estadística basada en la distribución de muestreo. sem es el sd de la distribución teórica de las medias muestrales (la distribución muestral).

calcular error estándar de la media

Desviación Estándar σ=yo=1norte(XyoX¯)2norte1diferencia=σ2Error estándar (σX¯)=σnortedónde:X¯=la media de la muestranorte=el tamaño de la muestra\ begin {alineado} & \ text {desviación estándar} \ sigma = \ sqrt {\ frac {\ sum_ {i = 1} ^ n {\ left (x_i – \ bar {x} \ right) ^ 2}} {n -1}} \\ & \ text {varnce} = {\ sigma ^ 2} \\ & \ text {error estándar} \ left (\ sigma _ {\ bar x} \ right) = \ frac {{\ sigma}} {\ sqrt {n}} \\ & \ textbf {donde:} \\ & \ bar {x} = \ text {la media de la muestra} \\ & n = \ text {el tamaño de la muestra} \\ \ end {alineado}desviación estándar  σ =n 1i = 1n( xyoX¯ )2varianza = σ2error estándar  ( σX¯) =norteσdónde:X¯ =la media de la muestran = el tamaño de la muestra

sem se calcula tomando la desviación estándar y dividiéndola por la raíz cuadrada del tamaño de la muestra.

La fórmula para el SD requiere algunos pasos:

  1. primero, tome el cuadrado de la diferencia entre cada punto de datos y la media muestral, encontrando la suma de esos valores.
  2. luego, divida esa suma por el tamaño de la muestra menos uno, que es la varianza.
  3. finalmente, saca la raíz cuadrada de la varianza para obtener el sd.

El error estándar funciona como una forma de validar la precisión de una muestra o la precisión de múltiples muestras mediante el análisis de la desviación dentro de los medios. la sem describe cuán precisa es la media de la muestra frente a la media real de la población. A medida que el tamaño de los datos de la muestra aumenta, la sem disminuye frente a la SD. A medida que aumenta el tamaño de la muestra, la verdadera media de la población se conoce con mayor especificidad. en contraste, aumentar el tamaño de la muestra también proporciona una medida más específica del SD. sin embargo, el SD puede ser más o menos dependiendo de la dispersión de los datos adicionales agregados a la muestra.

El error estándar se considera parte de la estadística descriptiva. representa la desviación estándar de la media dentro de un conjunto de datos. esto sirve como una medida de variación para variables aleatorias, proporcionando una medida para la propagación. cuanto más pequeño es el spread, más preciso es el conjunto de datos.

sin embargo, la desviación estándar es una medida de volatilidad y puede usarse como medida de riesgo para una inversión. Los activos con precios más altos tienen una SD más alta que los activos con precios más bajos. El SD ​​se puede utilizar para medir la importancia de un movimiento de precios en un activo. suponiendo una distribución normal, alrededor del 68% de los cambios de precios diarios están dentro de un sd de la media, con alrededor del 95% de los cambios de precios diarios dentro de dos sds de la media.