¿Cuál es la fórmula para calcular CAPM en Excel?

Abadía de Senanque en Provenza con campos de lavanda

El modelo de precios de activos de capital (capm) es un componente de la hipótesis de mercado eficiente y la teoría moderna de la cartera. capm mide la cantidad de rendimiento esperado de un activo, que es el primer paso para construir una frontera eficiente. Capm utiliza una ecuación fundamental para calcular el rendimiento esperado de un activo (generalmente una acción) con la incorporación de varios factores.

conclusiones clave

  • capm es un componente de la hipótesis del mercado eficiente y la teoría moderna de la cartera.
  • para encontrar el rendimiento esperado de un activo usando capm en excel se requiere una ecuación modificada usando la sintaxis de excel como: = $ c $ 3 + (c9 * ($ c $ 4- $ c $ 3))
  • capm también se puede usar con otras métricas como la relación de nitidez cuando se trata de analizar la recompensa de riesgo de múltiples activos.

La fórmula para calcular el rendimiento esperado de un activo utilizando el modelo de fijación de precios de activos de capital es la siguiente:

Como se muestra en la ecuación anterior, capm implica la tasa libre de riesgo, la beta de un activo y el rendimiento esperado del mercado. Puede ser importante asegurarse de que todos estos valores se toman del mismo período de tiempo. Aquí usamos un período de 10 años.

Para calcular el rendimiento esperado de un activo, comience con una tasa libre de riesgo (el rendimiento del tesoro a 10 años) y luego agregue una prima ajustada. La prima ajustada agregada a la tasa libre de riesgo es la diferencia en el rendimiento esperado del mercado multiplicado por la beta del activo. Esta fórmula se puede calcular en Microsoft Excel como se muestra a continuación. 

entendiendo el capm

capm solo proporciona un rendimiento esperado del activo en foco. Este rendimiento esperado puede ser un valor importante para un inversor al considerar una inversión. en general, el rendimiento esperado coincide con el período de tiempo utilizado para encontrar el rendimiento esperado del mercado. por ejemplo, se puede esperar que el mercado regrese 8% en un período de diez años. por lo tanto, el rendimiento esperado de las acciones también se encuentra en un período de diez años.

el capm es solo una estimación y tiene varias advertencias. principalmente, los factores utilizados en el cálculo de capm no son estáticos. la tasa libre de riesgo, la beta y la prima de riesgo de mercado son factores no estáticos que cambian casi a diario, pero que cambiarán de manera más sustancial en diferentes períodos y entornos de mercado o al menos una vez al año.

El capm puede ser una estadística importante a seguir, pero generalmente no siempre se usa mejor por sí solo. Es por eso que forma la base de la hipótesis del mercado eficiente y la construcción de una curva de frontera eficiente. Una curva de frontera eficiente implica la integración de múltiples activos y todos sus retornos esperados. la frontera eficiente usa capm para ayudar a crear una cartera eficiente que le dice al inversor el porcentaje óptimo de inversión en cada activo integrado que creará el mejor rendimiento teórico para un nivel de riesgo definido. en esta aplicación, capm se vuelve importante para el cálculo del rendimiento esperado, pero ese rendimiento esperado no siempre se realiza plenamente porque una inversión del 100% en un solo activo no siempre es la decisión más prudente dadas otras alternativas de inversión en el mercado.

calcular capm en excel

ahora supongamos que desea encontrar el límite de una acción en la que está interesado en invertir. Supongamos que la acción es tesla. primero, desea configurar su hoja de cálculo de Excel.

al configurarlo en el siguiente formato, tiene la oportunidad de desarrollarlo para crear una curva de frontera eficiente, así como simplemente para analizar y comparar el rendimiento esperado de múltiples activos o para agregar otras métricas de comparación.

Como puede ver, el cálculo se construye con supuestos en la parte superior que se pueden ajustar fácilmente cuando se pueden hacer cambios. Esto crea actualizaciones fáciles de la hoja de cálculo cuando cambian los supuestos.

Suponemos una tasa libre de riesgo del 1% sobre la tesorería a 10 años y una rentabilidad del mercado del 8% sobre el s & p 500 durante 10 años. El s & p 500 suele ser el mejor rendimiento del mercado para usar, ya que la mayoría de los cálculos beta se basan en el s & p 500.

encontramos que tesla tiene una beta de 0.48. la tabla también incluye la desviación estándar, que es el siguiente componente de datos necesario cuando se construye la frontera eficiente.

Para encontrar el rendimiento esperado de Tesla, utilizamos la ecuación capm modificada para la sintaxis de Excel de la siguiente manera:

= $ c $ 3 + (c9 * ($ c $ 4- $ c $ 3))

esto se traduce en un plus sin riesgo (beta multiplicado por la prima del mercado). El uso del signo $ ayuda a mantener las suposiciones estáticas para que pueda copiar fácilmente la fórmula a la derecha para múltiples activos.

en este caso, obtenemos un rendimiento esperado de 4.36% para tesla. Con esta hoja de cálculo ahora podemos construir a la derecha para múltiples activos. Digamos que queremos comparar tesla con motores generales. simplemente podemos copiar la fórmula en c10 a la derecha en d10. entonces todo lo que tenemos que hacer es agregar la beta para gm en la celda d9. encontramos una beta de 1.30 que nos da un retorno esperado de 10.10%.

análisis de inversiones

Como se muestra con la comparación de estas dos acciones, existe una gran diferencia entre 4.36% y 10.10%. Esto proviene principalmente de la versión beta más alta de General Motors vs.Tesla. En términos generales, esto significa que un inversor está más altamente compensado a través del rendimiento por asumir más riesgos que el mercado. por lo tanto, los valores de retorno esperados generalmente se ven mejor junto con beta como una medida de riesgo.

Una frontera eficiente lleva la inversión de múltiples acciones al siguiente nivel al tratar de trazar la asignación de múltiples acciones en una cartera. También puede haber otras métricas, como la relación de nitidez, que se pueden usar más fácilmente para ayudar a un inversor a medir la recompensa de riesgo de una acción frente a otra.